gD-Independent Superinfection Exclusion of Alphaherpesviruses.

نویسندگان

  • A Criddle
  • T Thornburg
  • I Kochetkova
  • M DePartee
  • M P Taylor
چکیده

UNLABELLED Many viruses have the capacity to prevent a cell from being infected by a second virus, often termed superinfection exclusion. Alphaherpesviruses, including the human pathogen herpes simplex virus 1 (HSV-1) and the animal herpesvirus pseudorabies virus (PRV), encode a membrane-bound glycoprotein, gD, that can interfere with subsequent virion entry. We sought to characterize the timing and mechanism of superinfection exclusion during HSV-1 and PRV infection. To this end, we utilized recombinant viruses expressing fluorescent protein (FP) markers of infection that allowed the visualization of viral infections by microscopy and flow cytometry as well as the differentiation of viral progeny. Our results demonstrated the majority of HSV-1- and PRV-infected cells establish superinfection exclusion by 2 h postinfection. The modification of viral infections by virion inactivation and phosphonoacetic acid, cycloheximide, and actinomycin D treatments indicated new protein synthesis is needed to establish superinfection exclusion. Primary infection with gene deletion PRV recombinants identified that new gD expression is not required to establish superinfection exclusion of a secondary viral inoculum. We also identified the timing of coinfection events during axon-to-cell spread, with most occurring within a 2-h window, suggesting a role for cellular superinfection exclusion during neuroinvasive spread of infection. In summary, we have characterized a gD-independent mechanism of superinfection exclusion established by two members of the alphaherpesvirus family and identified a potential role of exclusion during the pathogenic spread of infection. IMPORTANCE Superinfection exclusion is a widely observed phenomenon initiated by a primary viral infection to prevent further viruses from infecting the same cell. The capacity for alphaherpesviruses to infect the same cell impacts rates of interviral recombination and disease. Interviral recombination allows genome diversification, facilitating the development of resistance to antiviral therapeutics and evasion of vaccine-mediated immune responses. Our results demonstrate superinfection exclusion occurs early, through a gD-independent process, and is important in the directed spread of infection. Identifying when and where in an infected host viral genomes are more likely to coinfect the same cell and generate viral recombinants will enhance the development of effective antiviral therapies and interventions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Varicella-zoster virus and herpes simplex virus 1 can infect and replicate in the same neurons whether co- or superinfected.

UNLABELLED The two human neurotropic alphaherpesviruses varicella-zoster virus (VZV) and herpes simplex virus type 1 (HSV1) both establish latency in sensory ganglia. Human trigeminal ganglia are known to frequently harbor both viruses, and there is evidence to suggest the presence of both VZV and HSV1 DNA in the same neuron. We ask here whether VZV and HSV1 can exclude themselves and each othe...

متن کامل

Dual Infection and Superinfection Inhibition of Epithelial Skin Cells by Two Alphaherpesviruses Co-Occur in the Natural Host

Hosts can be infected with multiple herpesviruses, known as superinfection; however, superinfection of cells is rare due to the phenomenon known as superinfection inhibition. It is believed that dual infection of cells occurs in nature, based on studies examining genetic exchange between homologous alphaherpesviruses in the host, but to date, this has not been directly shown in a natural model....

متن کامل

A herpes simplex virus gD-YFP fusion glycoprotein is transported separately from viral capsids in neuronal axons.

Two models describing how alphaherpesviruses exit neurons differ with respect to whether nucleocapsids and envelope glycoproteins travel toward axon termini separately or as assembled enveloped virions. Recently, a pseudorabies virus glycoprotein D (gD)-green fluorescent protein fusion was found to colocalize with viral capsids, supporting anterograde transport of enveloped virions. Previous an...

متن کامل

Dual mechanisms of pestiviral superinfection exclusion at entry and RNA replication.

For many viruses, primary infection has been shown to prevent superinfection by a homologous second virus. In this study, we investigated superinfection exclusion of bovine viral diarrhea virus (BVDV), a positive-sense RNA pestivirus. Cells acutely infected with BVDV were protected from superinfection by homologous BVDV but not with heterologous vesicular stomatitis virus. Superinfection exclus...

متن کامل

Adaptability in herpesviruses: glycoprotein D-independent infectivity of pseudorabies virus.

Initial contact between herpesviruses and host cells is mediated by virion envelope glycoproteins which bind to cellular receptors. In several alphaherpesviruses, the nonessential glycoprotein gC has been found to interact with cell surface proteoglycans, whereas the essential glycoprotein gD is involved in stable secondary attachment. In addition, gD is necessary for penetration, which involve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 90 8  شماره 

صفحات  -

تاریخ انتشار 2016